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Previously reported experiments with a seif-propelled body submerged in a fluid
with a stable vertical dénsity gradient have demonstrated that the turbulently
‘mixed wako first expands more or less uniformly and then collupses vertically
while continuing to expand horizontally {Schooley-&: Stewart 1963). It was also
shown that the vertical collapse of the wake generates internal waves. XEssen-
tially two-dimensional experiments have also been used to explore some of the
build-up and decay characteristics of vertical wake collapse induced by a sub-
merged burst of turbulent mixing (Wu 1969; Schooley 1868): The present paper
roports now experimental measurements and a lineaf theoretical andlysis of the
internal wave field creatéa in stratified water by a burst of submerged turbulent
mixing. The forcing function has been obtained in integral form for an initial-
value model of wake collepse in terms of a general Brunt-Viisili frequency
profile, using normal mode theory. Numerical results have been determined for
the specialized case of & completely mixed circular wake in a constont Brunt—
Viisili profile. These resuits are compared to the experimental measurements,

1. Introduction

The concept of internal wave generation by collapse of a region of density
stratified fluid whioch has been mixed has existed for many years and various
researchers have contributed to the experimental, theoretical or to both sides of
the problem. Schooley & Stewart (1963) measured the initial phase of collapse in
the wake of a self-propelled body and demonstrated that wave-like effects
appeared at the surface, Furthermore, they convineingly showed that the general
characteristics of the surface phenomena can be explained by the existenco of a
number of modes of internal waves generated by the wake collapse. Their
analysis, however, was not aimed at predicting the amplitude of the internal wave
motion from features of the initial mixed region. Stockhausen, Clark & Kennedy
(1866) also made observations relating to wake collapse behind a self-propelled
body. They weroe concerned chiefly with the shape of the wake during the initial
expansion and subsequent vollapse and did not analyse their results from the
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pomb of view of internal wave generation. Observations on the details of s mixed
region during collapse in & two-dimeiional laboratory model were also taken by
Wu (1969)., The mixed region in this case was formed by stirring a contained
:semi-Gylindrical region at one end wall of a tank containing stratified fluid. The
collapse was simulated by guickly and smoothly removing the containing
apparatis and allowing the mixed fluid to flow into the stratified: fluid. Very
detailed results were obtained showing the subsequent shape of the mixed region.
The intérnal wave patterns associated with the coilapse were alse determined and.
results giving the phase configuration were obtained, ‘No amplitude information
was illustrated;-however, it was observed that wave heights as large as 0:2 of the
mixed region radius were formed.

A wide range of theoretical resuits have been obtained conm’:rmng internal
waves in genere], Most results have been olstained for linear mod 3ls. A very com-
prehenswe treatment of the problem (for general transient orsteady generation) is
given by Lighthill (1967) and further detailed theoretical work -with careful
experimental verification is given in Mowbray -& Rarity (1867). The former is
concerncd with a genetal treatise of dispersive waves in homogeneous media and
one section deals specifically with internal waves generated behind a vertically
moving steady disturbance. Experimental verification of the phase configuration
is provided, The latter publication provides a complete linear theoretical
treatment for forced internal waves in a (predominantly) homogeneous medium
and deals at some length with the-asymptotic solution of the Cauchy-Poisson
problem. The observational data provided confirms the theorctical predictions
regarding phase configuratiors. No comparison of amplitudes was undertaken.
Impulsively:generated internal waves in the atmosphere have been studied quite
intensively (Pierce & Posey 1970) but not from the point of view of generation by
weke collapse. Very recently, & linear theoretical analysis has been performed on
wave gencration by wake collapse (and other causes) by Miles (1970). A non-
linear numerical analysis of-the problem has been undertaken by Wessel (1969)
with a comparison to the experimental results.of Wu (1969).

The purpose of the present paper is to outline further experimental results
concerning waves generated by mixed region collapse and to present a. compara-
tive theoretical analysis, including prediction of amplitudes using a very simple,
highly. idealized lincar model. The experiments were performed in a small
laboratory tank in which a density.gradient was created by maintaining a vortical
temperature gradient in water and the mixed region was formed by rapidly
stirving o small part of the fluid. The internal waves were measured by o ther-
mistor placed near one wall of the tank. Results from four density prefiles are
illustrated. The theoretical model is based on the theory of linear modes and is
used to predict the subsequent motion due to the internal waves (amplitude and
phase) in terms ot the maximum turbulent expansion of the mixed region. The
forcing function in this case is composed of the initial buoyancy defect moments
in the mixed region and is caiculated following a scheme originally proposed by
Lighthill (1964, privato communication). Viscous effects are included.

Sinco linearized internal wave modals are readily amenable to mathematical
treatment it is belioved that this comparison of theory and experiment is doubly
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valuable - it not-only provides adiackground on which to understand the experi-
mental results but-also préviiedsa useful indication of how- detailed a mathe-
matital: model is nesdedsin rdef~to make useful quantitative predicticns of
resuiting wave fields.

2, Discussion-of erf#imental conditions and resuits

Figure 1 (plate 1) & s.picture of the ‘two:dimensional’ transparent cell that
was.used, with dime nuiss 30 cm wide; 7-3em deep and 2-5cm thick and grid
lines'2 cm apart. - # kb experiments the cell was completely filled.with distiiled
water betwéen the't .{tom and top copper strips. Stable stratitication of the water
(more denee below.s - in,above) was produced’by cooling the lower copper strip
and heating the vy £ one. The amount. of cooling and heating wad controlled by
‘the polarity and ount of clectrical direet current applied to ¢ommercial
thermo-electric * +it§ (modirn Pelticr effect devices) attached to the copper
stiips. For effici . and gtible operation the unattuched surfaces of the 1-1em
thick thermo- el vicdevices were held st a constant temperature by circulating
water through, - ckiots as shown in-the upper part of figuro 1.
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Travre 2. Temperature va. depth profiles, ——, profile 1; = ~~, profile'3;
~—, profilo 4; ~.—., profile 6.

Figure 2 shows four different profiles of temperature vs. depth estak’ shed by
using various combinations of electrical current through the therma-clectric
devices (not all shown in figure 1), For example, profilo 2 was estaldi-ned by
pgsaing 10 A with polarity to cool the bottom and 10 A with polarity to neatsho
top. Profile § required 6 A cooling current on the bottom and 5 A heatiir.on top.
Profile 6 was established with zero bottom current and 2:5 A heating at iue top.
Profile 4 required 10 A bottom cooling and zero top current. In this lagt case there
was slight cooling at the top because the constant-temperature water cireulating
through the upper water jackets was somewhat cooler than the ambient tempern-
ture. The cooling was by conduection through the structure of the thermo-
electric dovices attached to tho upper copper strip. It took about 2h after the
start of current flow for the temperature profiles to stabilize at the values shown
in figure 2. (Profiles 2 and & are omitted from this report.)
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Figurc 3 shows the four tutiperature profiles of figure 2 converted to four
-corresponding density profiles. The conversion was made using handbook data
relating puré water temperaturé with density, together with a reference tempera-
ture for each texnperature profile curve. The horizontal scale is in the oy density
unit commonly used by oceanographers (Sverdrup et al. 1942). In this case
oy = (p—1) x 103, where p is the water density in g/om3, The negative abscissa
values are density expressed:in parts per thousand, und density incredces from
left to right.
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Fraure 3. Density (o) vs. dopth profiles, O—O, profile 1;
X -« X, profile 3; @—@, profilo 4; | --~M, profile 6.

For density profiles 1 and 3 the density gradient with respect to water depth,
do/dz, is greater at the top and decreases with diptli. For profile 6 the density
gradient is very nearly constant. Profile 4 shows a region where density decreases
with depth near the top, then a region of approximately zero gradient which
changes to & region of approximately constant-density gradient near the bottom.

A prominent feature near the centre of figure 1 is & 1-3cm diameter device
which is a non-rotatable mixer. A lever system connects it with a drive mechanism
that will meve the mixer forward and backward about +'1cm ten times in about
2-2-5sec on.demand. This vigorous back-and-forth movement will generate a
pulse of turbulence which will first expand -and then collapse vertically (Wu
1969; Schooley 1968). The restoring force is gravity acting on p and de,/dz. It
is the resulting change in the temperature structure with time after mixing
which majzes it comparatively simple to study the internal wave structuroe for the
various temperature or density profiles of figures 2 and 3.

Figure 1 shows a small thermistor bead projecting aliout 2:5mm through a
small hole in-the upper copper strip, directly above the mixer. The thermistor
was connected to a calibrated recording system which yielded a {ime record of the
temperature at this point before, during and after mixing. Since the thermistor
was used in o manner which was relatively insensitive to velocity it recorded
tomperature changes due to vertical motion of the stratified water at the point of
measurement. A second thermistor bead is also shown projecting through a hole
in the copper strip near the centre of the right half of figure 1. Although not visible,
there are small holes for inserting thermistors at four different places along vhe
copper strip on each side of the centre-line (§).
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Figure 4 shows the results of expenmcnts In figure 4 (@) the time scale proceeda
«downward for 40sco after the start of mixing and the horizontal ecale measures
distance from zero at the centre of the upper copper strip (€ and proc»eds 160m
to the nght The.curves represent smoothed processed dats, f:ora:zeveral expefi-
ments using profile 1. The long-dashed ctrves are regions- where tne thermistor
recordmg system showed positive maximum readmgs, compared to the situation

before mixing. The short-dashed ‘ourves show regions of negative maxirium:
temperature readings. The solid lines aro the region where the temperature was.

‘the same as before mixing.
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Froure 4. Experimentally detormined constant pheso lines, () Temperaturo profile 1,
(b) temporatnra p.ofile 3,.(c) temporaturo profilo 6, (d) temperature profile 4.

The pattern ravealed by figure 4 (@) is that of a series of internal waves initiated
by a pulse of turbulence caused by the 1:3 om diameter.miver, 4:56 cm below the
upper water boundary and on the centre-line of the e\perxmentul cell, To save
spacoe, only the right half of the internal wave pattern is shown, A similar sym-
metrical sot of internal waves also oceurs to the loft. At various places in the
negative and positive regions of the internal waves the approximate amplitudes
of the temperature deviations &te shown. Since the water near the top was warmer
than that below, a negative temperature indicates an upward component of
water flow and a positive temperature means & downward component of flow.
The first convergence due to the vertical collapse caused the strong positive wave
which grow from about + 0+15°C near the centre to 4-0:5 °C about 7-6 cm from
the centre.

Internal wave absorbers were used at the right and left ends of the cell (not
shown in figure 1) in an attempt to minimize end reflexions. However absorptic.a
was not complete and quantitative date was not attempted when it was thoughe
that reflexion interference might be present.

Figure 4(b) is the same as figure 4(a) oxcopt that it is for profile 3 instead of
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profile 1. In this cdse the figure shows experimental points to give an example of
the amount and consistency of the original dats. The temperature grodient is
less in figure 4 (b) than in figure 4 (a) and4or this reason the initial negative wave
was too small to be measured. The first wave in figure 4 (b) is due to the first con-
vergence caused by the vertical collapse of the initial turbulent divergence.
The internal waves for the profile 3 condition (figure 4b) are shown to travel more
stowly than for the stronger temperature gradient profile 1 (figure 4a):

Figure 4(c)-is for the weak and quite linear profile 6. A weal:- temperature
gradient makes temperature.variationg due to the internal waves more difficult:
to measure. However, enough-data are available to show that thé internal wave
speed is still less than for the previously discussed stronger gradients.

Figure 4(d) shows the internal waves when profile 4 was used. In this case
there was a rather wenk gradient at the mixeér depth with<an isopyenal inter-
mediate region dbove. Ab the top the water was slightly colder above than below,
but apparently not endugh to induce convection, The results of the experiment
show slowly-travelling internal waves where the.collapse of the initial turbulent
pulso induces first & negative and then a positive temperature wave, This is the
reverse of figures 4 (b) and 4 (c) and is due to the change in the sign of the gradient
near the top for profile 4 compared to the case for profiles 3:and’ 6.

3. Theoxréiical analysis

In this section a theoretical model which is based on the conditions which:
prevailed during the experimentation is discussed. Caleulations using this model
have been made and are présented for comparison>with the recorded data.

A number of simplifying and idealizing assumptions haye been used, most of
which are common to the first-order study of internal waves (e.g. Mowbray &
Rarity 1967). Besides the usual assumptions of linearity, Boussinesq approxima-
tion and no molecular diffusion of those properties that define the ensity, the
following more specialized assumptions are made: (i) Moleoular viscosity is
included by means of a perturbation expansion, following Dotoe (1068). This
agsumption will be dealt with more fully later. (i) The initial disturbance, and
thus the resulting flow pattern, isstrictly two-dimensional. (iii) The initial velocity
strugture iszero. (iv) The end walls arc infinitely distant. (v) Thaanalysis, later on,
is particularized to the case in which the Brunt-Viisili frequency is independent
of depth. Tt is unfortunate that more information was not available about the
degreo of mixing prior to collapse. However, it is expected that, at least over the
area of the stirrer, mixing was virtually complete and any incompleteness was
near the edge of the mixed region. If this were the casoe, it  ould show up in the
resulting wave field mainly as a deficiency of high-order modes. It will be shown
below that ror the comparison with the experimental data, low-order modes are
dominant (owing to geometrical coupling and viscous offects), For the presont
problem therefore, the simplest mathematical ropresentation of the initial state
will be used, namely a perfectly mixed circular region,

Of all theso assumptions, (iif) and (v) are probably vhe raost unlike the experi-
mental conditions for short-term observations, Initially, and very near the
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‘edge’ of the Mmixed region, all assumptions (except possibly (iv)) are expected to
break down, However, this breakdown should apply mainly.to very short length-
scales, and since their group véjosities ar2 low and viscous damping high they are
not expected-to contribute matesially ¢o the flow pattern. Also, the turbulent
velocity structure existing initially will' be most energetic in length-seales less
than.the initial diameter of the mixed region-and will be almost completely
contained within the mixed region; thus the direct coupling between this struc-
ture and the resulting wave field will be low (especially for waves long compared
with the initial diameter).

Non-linearities in the resulting wave field may be important for a short time
after the beginning of collapse and near the mixed region. An upper estimate for
the vertical amphtude of wave motion is }a (Wu 1969), where  is the radius of

the mixed: ~gion, thus the ratio of the non-linear terms in the equations of motion
to a typical linear term is given by 3ak, where k is the wave-number of the wave-
field. From figure 4and table 1 the largsst value of this parameteris 0-35 (profile 1)
Fivr reglom; or times removed froii the onset of collapse this parameter is
expected tobe subs"m‘fmlly reduced (figure 7 (a) or Wu 1969).

The position at whicithe measurements were taken is very near:y solid boun-
dary 5o there is the possibility of a substantial modification of the inviscid wave-
pattern b boundary-layer effects: Algo, since the Brunt—Viisild frequency is of
order 1 per sec there is the likelihood of apprecis. Je viscous dissipation within the
body of the fluid and by the walls. It was not expedient to, perform a new set of
experiments (the ones reported here were done some years before the theory was
undertalen), so instead, these viscous effects are included in the theoretical model.
To accomplish this, the perturbation scheme given by Dore will be used. It is
directly applicable to the present problem and g0 only the results of that investi-
gation will be used. Itis thus necessary to solve only the inviscid equations and
apply the viscous corrections latew.

With the previously mentioned assumptions, the inviscid equations of motion

are: g:f %l_: - 0 (1)
P+ = 0, (2)
o) +"—1’ = ) ®)
P 4200 o (4)

with 2 horizontal and perpendicular to the axis of the mixed region, = positive
downwards, py(z) the density profile before mixing, p the instantaneous differenco
between the total density and p,, p the instantancous difference between t..e
total pressure and the hydrostatic head, g tho acceleration of gravity, u, w the
velocity components in the x,z plane, and ¢ the time. The boundary conditions are

w=0 at z=0,D foralltime, (5)
wremains bounded as x> 3 00, (6)




166 A. H. Schooley and B. A, Hughes

The initial conditions are’

pu,w=0 forall z,z (7
and P = po2)f(2). (G
The problem is amenable to treatment by a one-sided Fiurier transform in
time, Thus, if ®
W= f e~toty(t)de (9)
¢

{and similar representations for all the other dependen’; variaxl~s), equations (1)
to (4) and (8) reduce to the following equation (using the Boussineaq approxi-

mation): & . Nz) T _ g a_zf- (1)
0z2 2 wioa
52\
where ) N@z) = (g %’;—")é
is the Brunt-Viisild frequency. ’
To reduce the problem further, let
W= §¢n(z)Fn(x)s 11y
where ¢,(z)is an eigenfunction from an orthonormal set defined by
d
d;‘;”+a2 ( )¢n =0 (f,(2)=0 at z=0,D) (12)
28 2

and thus e +a2F f Pl z)3x2(7” = I (13)

Since I is a direct representation of the buoyancy at time zero it must vanish
outside the initial mixed region, It is also necessary that ¢, (z) be the nth member
of a complete set; otherwise an integral term (representing a continuous dis-
tribution of modes) is required on the right-hand side of (11). It is shown by
Coursuit & Hilbert (1953) that ¢,(2) is complete if  possesses continuous first
and piecewise continuous second derivations (in z), i.e. from (10), if ¥ (or f) is at
worst piecewige continuous in 2, Thus the solution of (13) satisfying (6) is

F,,(x) =1- éia” (efantf we—fan’l /i (7’) (ly] + e‘-fa”zfx
z

-0

el (n) dv) . (14)

Let the initial mized region be symmetric in 2 with its midpoint at (0, z,) and its
maximum horizontal extent given by 2a. Then the total wave field exterior to the
initial mixed region can be obtained from

Efx = =igemiein [ cos @ I)dn (el >a). (15)

Using the inverso transform to (9),

+ 0 —{ a
=g (g o [ eos @I do, (10
0 —fC N 0

where ¢ is chosen to ensure that the integration is below the singularities of
the integrand.
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The initial bunyancy function:Z{z) is given by
g.[? -
I = s/, f(2,2) (2 dz,

where, for a circular, completely mixed region,

F(2,2) = (polz)lpofz) = 1) Hiz+ @) H{a~a) Tz =7+ (02~ 2)) Hlzg -2+ ‘“2"“?”5"
17

N -,
\'\
0 N “
5 AN J_
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2 \
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~
- N\
Density, p

Fiaurg 5. Theorotical model of the initial density vs. depth
through tho centre.lino of the mixed region.

Hereo 2, is the depth of the centre of the region, H is the Heaviside unit function
and po(z,) is the density of the mixed region (sce figure 5).
In terms of the Brunt-Viisila frequency,

| o) J.
or, using the Boussinesq approximation,
Pol1) J‘ “N*(z)
Lot L D e L2 18
e 1) (8

-— ERCEE L
Thus, 1 =__________H(a:+a3)£1(a x)f "

é.(2) f "Ny de d. (19)
=@ =2} 4

The general solution represorted by equations (19), (16) and (12) will now be
restricted to the present experimental case. The density profiles shown in figure
3 indicate that the approximation N* = constant siiould provide most of the

pertinent features of tiie internal wave field, With & = N and z; = 2z,
_ 2bsin (nnz/D)

hulz) = DT = D (20)

nw

D=1 (2”

&y =

e A A——————

PR NS
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and

f: cos (e, ) I{y)dy = —%2- ,E;zD.(Jg—f— 1)]5 cos (%é‘) I (_D_(T_—q%;/-lv_g)?) , (29

where J, is the Bessel function of second order. Therefore, interchanging the
order of integration and sunimation in (18) (which is permissible by the rules
governing Fourier series representing generalized functions),

_+ o & 8in(naz|D) cos (nmze/D) f’*‘“’-“ ( anm ) .
W = 1 "@l poy > ot e\ DI AR e 2 dw.

(23)

This expression can be simplified by contour integration. For ¢ > 0 it can be
shown that thereis nomodification to the value of this integral if the integration
path is closed by ancinfinite semicircle in the upper half plane. For ¢ < 0 the
lower half plane can be used, Thus the value of w arises only from integration
around $he singularities w = + N, (in ). Since these are branch points & cut is
necessary and it is convenient to take the cut along the real w axis between + N,
Intégration around the brancl: points produces no contribution, so (23) reduces to
an integration along the bottom of the cut from — N, to + N, and an integration
along the top in the opposite direction. In appendix A it is shown that

d(a})/d(w®) > 0

near the real w axis and that this condition tog.ther with the condition of
boundedness at large jz] leads to the restriction t'1at the real parts of » and a,,
must have the same sign for w slightly below the real axis. Therefore, on the
bottom of the cut ¢, Z 0 for @Z 0 and on top , S0 for wZ 0.

Finally, with ¢ = 0,

da% » (mrz) co0s (nnzo) J‘ NoJy(anm|D(1 - w2 NE)Y)

b —-_n%lsm D D /Jo (Njfw®=1)¥

s

. nmx
x sinw! cos (W) dw, (24)

For t < 0 there ure no singularities. Thus
w=0 for £<0. (25)

Using the lincarity assumption and the transformation w = Njcosd,t the
amplitude & (= [wd?) is given by

4a®, & nnz nmz\ (47, [ anr nnx
= — I3 8in | = g | —8 | Y S, i
mg =D ”%,l 8in ( ) ) co‘s( i) )fo Jy ( Tam 0) cos (Nt cos 0) cos ( Dian 0) do
t-o

(26)
‘This represents the inviscid sol»tion.

1 It can casily bo seen that to this approximation @ ropresents the angle botween the
vertical and the local lines of constant phuse or ‘erest® lines of that partieular frequency
component, If ¢ = 0 the lines of constant phase are vertical and if # =} the lines avo
horizontal.
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To inzorporate the most important effects of viscosity it'is necessary to return
to equation (16) and perturb the frequency w in et and to modify ¢ to allow.for
boundary-layer effects. The resulting equations. are obtained in appendix B.
Some general characteristics of the form that the internal wave pattern possesses
will-now be outlined.

The finite depth of the model has resolved the pattern into an infinite series of
modes. (This situation remains true for an infinite depth if IV is piecewise con-
tinuous and -> 0 as z->c0). ‘The horizontal inviseid group velocity of the nth mode,
Cy,, is given by '

_do _ NyDn*n* N, D
In = da,  (WPrt+ D% am

8in® 4. (27a)

8'5 ’1‘?‘*‘“ /\ Mode 4 (1)'0 7 Moded N\~

_0_5 " VV —1'0-
(5)-0 : LN D Mode 3 5-0- Mode 3 /\ AN AN
-50 - -50 \/ Vo
3-0 g HMB AN Mode 2 3'0' Mode 2 JANNANVANYA

-20 A ~20+ \/ (VAAVARY

g.gs- Mode | 8-2- Mode | /\ /\ /\ /\ /\
—0:25- ~02+ \/ \\/ \/ \/ \/ \
> 4 6 8

L] 1 1

0 5 I 15 O

(a) Distence in units of D (6) Timo in units of the Brunt-Viiisiilid
period

Froure 6. Nlustration of the mode structure of an invisedd internal wave field. The modes
have been soparated to show gompnarative fectures. (a) wave hwht at an inatant as a
funotion of distance from the centro-lino, Not = 60; () wave Loight at one partioular pomnt
as a function of time from beginning of the collapse, /D = 2. (For this oxample: Ny, = 0-23
geo~l, @ = 2:06¢em, D = 73 em, z = 0:3 om, 2, = 4-5 om and viscosity = 0.)

Also, the horizontal phase velocity C, is

0, =2 20D, (270)
a, o
The maximum group velocity Ny D/m (which is the same as the maxirium phase
velocity) increases directly with N, This is in accordance with the experimental
observation that the wave velocity increases as the density gradient {or )
increases. Also, the horizontal extent of the wave-pattern for cach mode is limited
at any instant and at higher mode numbers the limitation appears nearer the
centre-line of the mixed region. Within this horizontal limitation a wave-field
stretching back to the centre-line can exist.
A stationary phase reduction of equation (26) (with Ny large) indicates that a
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stationary phase contribution exists for every point within this possible wave-
field. Equation (27) gives the value of 0 at which the phase of equation (26)
is stationary for {z|ft = Cy,. As |2|-0, -0, the horizontal wave-number
nir|Dtan0->c0 and w~> N, Therefore cach mode gives rise not to a localized
group of waves but to a field extending from the centre-line to the limiting
extent.for that particular time. The wavelength within the field increases from
zero to oo over this same region. Figure 6(e) illustrates this behaviour.

As a function of time at a given position the wave-pattern is essentially zero
until the most rapid (» = 1) mode arrives (at ¢, say) and exhibits a continuing
oscillation in time with a frequency rising from zero asymptotically at Ny, At 2
the second-mode arrives and exhibits a similar behaviour in frequency and so on
for all the modes. This is shown in figure 6 (b).

If only one mode is present the wave-field will exhibit dispersion characteristies
pertaining to that mode. 1f more than one mode is dominant, as is true for the
example used in figure 6, interference effects will also be apparent.

The damping effects of viscosity are most pronounced for high modes and high
frequencics (0 ~ 0). Waves nearest the centre-lino at any given instant or waves
appearing at later times at any given position aro reduced the most. ‘The local
frequency is also reduced by viscosity.

All these general charactaristics are in agreement with the measured patterns
shown in figure 4 even though these do not satisfy the condition Ng¢—cv. The
vuly major exceptions occur in the vieinity of theinitial mixed region. In figure
4(a) the distance between zeros along the 10see line increases away from the
centre-line, The same behaviour can be seen in 4 (b) along the 20sceline. Also, the
time between zeros along the 5cm line in figure 4(b) decreases towards later
times (although in figure 4(«) the bLottom curves indicate a slight opposite
tendeney). However, not only may asymptotic arguments be expected to fail
there and viscous effects dominate, but the region || < a (for all z) has been
previously excluded from the domain of applicability of the solution. It is also
apparent from the measurements that o simple wave field exists, iraplying the
presence of only o few m. «les,

To accomplish & dircet comparison of the theory with experimental results
the temperature excursion from ambient was calculated using AZ7' = {(d7'/dz)
evaluated at z, the depth of the thermistor bead, for cach profile shown. The
values used in equation (B 3) are listed in table 1, Each of theso values was ob-
tained from the experimental data. The listed values of Ny are the averages of the
Brunt-Viiisili frequency over the total depth of the tank for each profile, In
each case the average was ealeulated from an exponential curve of N(z) fitted
with a least-square teehnique to individual values of X obtained from figure 3.
'The accuracy of N, is estimated at # 109, Maximum vertical expansion of the
turbulent pulses was determined by dye and cinematography techniques
(Schooley 1968). One-half the expansion determined a to an aceuracy of about
+109,.

The values of viscoaity listed were obtained from standard handbook tables
and pertain to the measured values of temperatures: ¥ corresponds to an average
throughout the tank, » corresponds to the value at the thermistor dopth.
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It was not expected that mode 1 would be important since it represents fluid
travelling all up or all down in a given column. Instead the initial buoyancy
pattern is such that it would couple well into modes which represent & downward
velocity above z, and an upward velocity below zo. If z were exactly half of D, the
flow would therefore be mode 2 with contributions from the other even ordered
mades because of the initially round shape. In fact, in (26) all odd modes do

dT'fdz
Profile @ (om) N, (sec?) (°C/em) ¥ (ogs) z (cm)
1 2:00 1-19 111 £-006 0-260
3 2:05 0.8 3:8). (+000 0-300
6 2:35 041 1-18 0010 0326

TAnLk 1. 2y = 460m, D = 73 om, 5 = 001 om/scc?

vanish under this condition. With the present ratio of z,/D = 0-616 it is oxpected
that mode 3 will also be important since the eigenfunction for # = 3 has a zero
at z/D = §. A-large contribution from modes 2 and 3 is apparent in the exumple
shown in figure 0. For the calculations used in the comparison with the m-asured
data enough modes were included in the surnmation to ensure stability of one part
in 103 in the final valuo of §. The necessary number of modes ranged from 4 at,
large |z| and § to 30 at small || and §. Typieally, mode 2 was dominant with some
substantiai contributions from modes 3 and 5.

572 826 127 572 826 12:7 572 826 12:7

)
f

N

0T P07 TN £
Profile 1 Profile 3 % 3 N
g -C
Profile 6

Fiqurg 7. Temperaturo excursion s, time. —, theoretical curves; ..., experimental value-.
‘The position of each line is in scalo with its distance from tho ecntre-line. The distances in
centimotres are shown abovo cach line,

The comparison is shown in figuro 7. The dotted lines represent measured
data, the solid lines are the theoretical curves. At least two sots of measured data
were obtained for each profile. The time origin for the caleulated curves has had
one adjustment for each profile to provide a visual ‘best’ fit to the measured
curves. This is cousidered permissible becauso the instant when collapse began is
not known experimentally. This is beecause the coneept itself is an idealiza-
tion: collapse can oceur during the entire stirring and turbulent expansion
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interval, Also, o small change in N, or ~1y variation, in the Brunt-Viisili
frequency with depth will affect the velocity of the waves ivithout appreciably
affecting their amplitudes, thus cficctively producing a diffefence between oxperi-
montal and theorotical timo origins. The time shifts actually used are 1-6,1:6 and
4+0 seo for profiles 1, 3 and G respectively. As in figure 4, the tin.o origin refers to
tho instiint the mixer was turned on. For cach curvs the distance in centimotres
from tho contre-lino to the buse-line at which those measurcinents were obtaizer”
is shown by tne number at tho top of cach figure. The oxcursions from thic base-
line represent-tho temperaturo deviations from ambient and are scaled at the
bottom of each figure. For profile 1 the fit is good only for the first wave. After
that the theoretical curves prediet more waves than are experimentally found

0 572 8:26 — 12.7

Time (sec)

2N
</ N

Ak AN \

i 13 8

Frauus 8, Galoulated temperaturo exoursions for profile 3 with zoro viscosity. The number
abova cach line is its horizontal distanco from the centre-line in centimeotres.

(excopt for the meansurements at 12:7 em). Nevertheless the amplitudes of the
theoratical cxcursions aro very similar to the measurements. For profiles 3 and 6
tho measurements and the theoretical curves are in reasonably good agrecment.
"I'ho inviscid solution for profile 3 is shown in figure 8. It can be seen that for
this scale of motion viscosity is indeed important and over the recorded time
interval reduces the amplitude of the wave typically by o factor of two. The
degreo of matching between (B 1) and (22) was tested by samplo caleulations on
profiles 1 and 6, Equaticn (B 1) was used in (B 3) with » = 0 (P 4= 0) and compared
with tho results for @, in place of 47, in (B 3), Both functions gavo the same results
with differences of about 5 9.
Squation (20) indicates that the wave amplitude is fairly strongly dependent
on the radius of the initial mixed region, If /D & 1,

JlanmiDsind) = (ana/Dsind)®x }
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for low mode numbers and low frequencies. In this cass §oc ad. If the mode number
of the dominant waves is large enough or the frequency of the dominant waves is
small enough, orif a/D = 0(1), Jy(enw|Dsin 0) is essentially independent of @ and
80 Loc @’

4, Conclusions

It has been shown that the internal wave amplitudes generated by the two-
dimensional collapse of an initially turbulent region can be predicted (at least
near a'boundary) using o highly idealized lincas model. The accuracy of the
predietion is only loosely determined but for these measurements it is approxi-
mately the same as the experimental scatter, The discrepancy in time of arrival
of the waves between thieory and oxpenment asisindicated by the adjustment in
the timo origin of the theorétical values, is belioved to be due mainly to two effects:
variations in the Brunt-Viiisiili frequency from the assu:ned constant profile and
non-zero mixing time.

Appendix A
The cigenvalue &, and the eigentunction ¢,,(2) are defined by
l. n v ~
Chera(TE-1)4,=0 G0=0 ot z=0D) @Y

and fo (—Ai —1) [nldz= 1. (A2)

(Equation (A 1) is the same as (12) in the main part of the paper.) Differentiate
(A1) by w* and set 29, /00w = ¥,

Tl egifE) et e-e @y

d"-

Multiply (A 8) by.¢¥, the complex conjugate of ¢,,, and integrate over all z, then

u

dordy, N2 da,, a2 ., .
N IR R

‘ako the complex conjugate uf (A 1), multiply by ¢, and integrate over all w.
Since w is real a,, is real,

dyr, doy N2
T

and, from (A 4), Zz'z‘ = % j NYg, |2 d=. (A 5)

Therefore (do)/dw® > 0 and, in fact, since

nyz D
[T ede = 14 s
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(by A 3), which is greater than 1, do? [dw? > &% [w? Thisshows that the horizontal
group velocity is always less than the horizontal phase velocity.
Let o = 0,—1i¢ and a, = &, +10. Then for small e,

§ o el (da‘f,)
al"‘ dﬂ)g 8"0.
However, in order that F(z) remains bounded as 2-> + 00, § must be negative

(equationy14), Therefore, since € > 0 (cquation 16) and da?/dy® > 0, v, and «,,,
must have the same sign.

Appendix B.

Using the perturbation expansion set.up by Dore, equation (20) represents the
dnviscid outerolution to the problem. The lowest order ‘inner’ solution, near the
top boundary, is given by

2§ 7 ; f )
Vo=77 {D( ValE 1) {"17; nDn( 4 ) l]’:- 8 g~} cog (2(w[20)t + }n1)

+i[1 - 2} =i cos (z(wf2v)} &n)]]} , (B1)
where » is the local kinematic viscosity. It is also shown by Dore that-the fre-

quency in equation (16) must be replaced by a perturbed frequency w,,. To second
order.in the expansion

o= - €59 -5 25

[ nn? Sw* w? %\
S LSS iac § Wi DI Y § Pt
+mlmremnw (- - -w) )} e
where 7 i the average of the kinematic viscositiesat z = 0 and z =

If (B 1) and (B 2) are substituted in (23) and the previously putlmcd steps aro
taken, an equation for { analogous to'(26) is obtained. In a suniiified form

_22 (nmzg) (Nea, an
RN (“D‘)fo o (Da wt/zvs)*)

x [, cos (w,t) cos (x, x) -+ iy 8in (w,.8) cos (a,2)] dw, (B3)

where Yu =t tiy and o, = w{w)-iow)




Jownal of Fluid Mechanies. Vol.

Sl purl |

sHOoOP LY A HEGHES

Plale 1

Frer iz, 1, Photograph of the tanh.




> . - S v e N -

Internal waves in a two-dimensional mized region 175

REFERENCES

Courant, R. & HitserT, D. 1953 Methods of Mathematical Physics, vol. 1. Interscience.

Dorg, B. D. 1968 Oscillations in & non-homogeneous viscous liquid. Z<!lus, 20 (3), 514.

‘LregTaILy, M.J. 1967 On waves generated in dispersive systems by travelling forcing
cffects, with applications to the dynamics of rotating fluids. .J. Fluid Mech. 27,
726-752.

Mires, J. W. '1870 Internal waves generated by a horizontally moving source. J. Geophys.
Fluid Dynamscs, 2, 63-87.

Mowsaray, D. E, & Rariy, B. S. H. 1967 A theoretical and experimental investigation
of the phase configuration of internal waves of small amplitude in a density stratified
liquid. J. Fluid Mech. 28, 1~186.

‘PIERCE, A. D. & Posey, J. W. 1070 Theoretical prediotion of acoustic-gravity pressure
woveforms generated by large explosions in the atmosphere. AFCRL 70-0134,
Dopt. of Mech. Engr. M.LT.

SoHooLEY, A. 1968 Wake collapse in stratificd fluid: experimental exploration of scaling
characteristics. Science, 160, 763-764.

ScroorEYy, A. & StEwaRrT, R.W. 1903 Expcrimonts w, a self-propelled body sub-.
merged in o fluid with a vertical density gradient. J: Auid Mech. 15, 83-96.

StooksAUSEN, P. J.,CLARR, C.B. & KexxeDY, J. F. 1966 Three-dimensional momentum.
less wakes in density-stratified liquids. Hydrodynamics Laboratory, M .1.T. Tech. Rep.
no. 93.

Sverbrue, H. U., Jounsoxn, M. W. & Fiesme, R. H. 1042 The Occans, Their Physics,
Chemistry and Qeneral Biology. Prentice-Hall.

Wesser, W. R. 1908 Numerical study of the collapso of a perturbation in an infinite
density stratified fluid. Phys. Fluids, 12, 171-176.

Wu, J. 1960 Mixed region collapse with internal wave gencration in o density-stratified
medium. J, Fluid Mech. 35, 531-544.,




